Packing Boxes	
Problem wording	Part 1: 1. Draw a square measuring $6 * 6$. 2. Find the area of the square. Part 2: 3. Find the area of a little square measuring $2 * 2$. 4. Draw a little $2 * 2$ square inside the upper right corner of the square shown below. Suppose we remove the small $2 * 2$ square from the $6 * 6$ square. Find the area of the new figure. 5. Find the area of a little square measuring $4 * 4$. 6. Draw a little square measuring $4 * 4$ inside the upper right corner of the square shown below. Suppose we remove the small $4 * 4$ square from the $6 * 6$ square. Find the area of the new figure. Part 3: 7. Draw a small square in the upper right corner. How would you explain to a friend how to find the area of a square when you don't know its size? 8. Now suppose that the little square measures $S * S$. Could you find the area now? 9. Suppose we remove the small square measuring $S * S$ from the square measuring $6 * 6$. Find the area of the new figure. 10. Do you think the answer could be in decimals? What about negative numbers? 11. Imagine the smallest possible square inside the larger square. How much would its sides measure? What about the largest one possible? How much would its sides measure? 12. How much would the smallest possible new figure measure? How much would the largest possible new figure measure? 13. How small and how large do you think S could be? Part 4 14. Now draw a small square measuring $S * S$ inside all four corners of a square measuring $6 * 6$. 15. Imagine you remove all four small squares. Find the area of the new figure. 16. Do you think the answer could be in decimals? What about negative numbers?

$\left.\begin{array}{|l|l}\hline & \begin{array}{l}\text { Students are asked if } \mathrm{L} \text { (for 'side' in Spanish) can be in decimals or a } \\ \text { negative number to work on the idea of continuous variable. We also } \\ \text { work with the maximum and minimum values of the variable: } \\ \left(L_{\text {min }}=0, L_{m a x}=3\right) \text { and the maximum and minimum values of the }\end{array} \\ \text { resulting area: }\left(A_{\text {min }}=0, A_{\text {max }}=36\right) \text { noting as well whether } \\ \text { students give a range of values for both or just specific values. } \\ \text { Part } 7 \\ \text { The exercise involves a } 6 * 6 \text { square from which two smaller squares } \\ \text { at opposite corners are removed. Their size is unknown, although the } \\ \text { two are not necessarily the same size. Students are asked to draw the } \\ \text { squares and find the area of the figure resulting from removing the } \\ \text { corner squares (Figure 2). We call this task the two-corner task. }\end{array}\right\}$

	The third task is meant to help students generalise the preceding two situations. Now aware of how to find the area, they should establish the relationship between the size of the corner square and area of the resulting figure. We analyse the representation used and whether or not students realise that the larger the square, the smaller the resulting area (inversely related variables). Students are asked if L (for 'side' in Spanish) can be in decimals or a negative number to work on the idea of continuous variable. We also work with the maximum and minimum values of the variable: $\left(L_{\min }=0, L_{m a x}=6\right)$ and the maximum and minimum values of the resulting area: $\left(A_{\min }=0, A_{\text {max }}=36\right)$, noting as well whether students give a range of values for both or just specific values.

