
$\left.\begin{array}{|l|l|}\hline & \begin{array}{l}\text { 8. When María is 66, how old will Raúl be? How did you find the } \\ \text { answer? } \\ \text { 9. If you know how old María is, how can you find Raúl's age? }\end{array} \\ \hline \text { Purpose } & \begin{array}{l}\text { - To apply a rule governing the function to specific numerical cases. } \\ \text { - To generalise the functional relationship. } \\ \text { - To generalise the functional relationship in cases involving an } \\ \text { indeterminate quantity. }\end{array} \\ \hline \begin{array}{l}\text { Suggestions } \\ \text { for classroom } \\ \text { delivery }\end{array} & \begin{array}{l}\text { In this task, the functional relationship is implicit in the problem } \\ \text { wording. The teacher should encourage students to allude to the } \\ \text { context in their explanations of how they found the answers to } \\ \text { questions 1 and 3. Students tend to reply in very general terms, such } \\ \text { as 'I added it' or 'because I did the operations'. The objective is for } \\ \text { them to relate their operations to the context, with remarks such as 'I } \\ \text { added 5 to Raúl's age because María is 5 years older'. } \\ \text { When working with specific examples, both the arithmetic expression } \\ \text { used and the result should be assessed. On occasion the expression } \\ \text { and representation of the functional relationship may be correct but } \\ \text { the answer wrong due to operational error or misunderstanding of the } \\ \text { data provided. }\end{array} \\ \begin{array}{l}\text { Teachers may ask students to arrange the data in a table drawn from } \\ \text { scratch or to include the data in a pre-prepared table such as in task } 6 . \\ \text { Here students should be encouraged to find examples that validate } \\ \text { their conjectures, either using cases set out previously or inventing } \\ \text { new ones. Teacher and student should then discuss whether it is easier } \\ \text { to recognise regularity when the data are neatly organised. } \\ \text { When students use a letter to represent an indeterminate quantity for }\end{array} \\ \text { the first time, they may not fully understand its meaning. In those } \\ \text { cases, the teacher may clarify the idea by saying 'it can be any } \\ \text { quantity" or 'we don't know the quantity'. } \\ \text { When students fill in the second column they should relate the values } \\ \text { to the operations performed previously. They should notice what } \\ \text { remains constant and what varies, how the values relate to the problem } \\ \text { wording and whether the same information can be conveyed with a } \\ \text { letter. }\end{array}\right\}$

